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Abstract

This paper describes an integrated demonstration
of autonomous instrument placement, robust execution
and ground-based contingent planning for the efficient
exploration of a site by a prototype Mars rover.

1. Introduction

Approaching science targets, such as rocks, and
placing instruments against them to take measurements
is the raison d’être of a planetary surface exploration
rover, such as the planned 2009 Mars Science
Laboratory (MSL) rover.  This is necessary to acquire
samples, determine mineralogy, obtain microscopic
images and perform other operations needed to
understand the planet’s geology and search for
evidence of past or present life.  Significant science
simply cannot be done with remote measurements
only.

Figure 1 K9 Rover autonomously places a
microscopic camera to examine a rock target in the
NASA Ames Marscape.

In order to accomplish the task of instrument
placement within a single cycle with the robustness
required for a mission, the on-board software must be
able to handle failures and uncertainties encountered
during the component tasks.  A task may fail, requiring
recovery or retrying.  Tasks may exhibit a high degree
of variability in their resource usage, using more (or
less) time and energy than expected.  Finally, the state
of the world and the rover itself may be predictable
only to a limited extent. Exploring multiple rock
targets further exacerbates this situation.  These factors
require that the rover’s software have the ability to
reason about a wide range of possible situations and
behaviors.  A simple script is insufficient; instead, the
rover can use either on-board task planning or off-
board planning in conjunction with robust on-board
execution.

In November and December of 2002, researchers
at NASA Ames Research Center (ARC) successfully
demonstrated an end-to-end instrument deployment
scenario from ground operations and planning to
execution and science data capture.  This
demonstration occurred in the newly constructed
Marscape rover test site.

The demonstration mission scenario begins with
the NASA Ames K9 rover at the site to be explored, in
this case a simulated lakebed in the Marscape.  K9
acquires a panoramic set of stereo images of the site.
These are downloaded and processed off-board to
create a virtual terrain model of the environment,
rendered in the Ames Viz 3D virtual reality interface.
The mission controllers explore the virtual world and
choose rock targets of interest.  For each rock they
decide where the rover needs to be to examine it, what
measurements are desired at that location, and how
much these measurements are worth (in Euros).  In
addition, they specify the allowed paths between the
various locations, including the start position and any
additional decision points.  This information is
automatically saved to a file for use by the mission
planner.

Our goal is for the rover to obtain, in a single
command cycle, the set of measurements that
maximize the expected utility subject to constraints on
time, power consumption and where it can go.  We
accomplish this using an off-board mixed initiative



contingent planner along with robust on-board
execution.  This is consistent with current mission
practice, which requires intensive sequence
verification before uplink.  In addition, the perceived
additional risk of an on-board planner could delay
acceptance by mission managers.

The planner generates a sequence, with
contingencies, that is uploaded to the rover, where it is
executed by the conditional executive.  The rover
navigates, via decision points, to rock targets where it
stops and autonomously places an arm mounted
microscopic camera against the target and acquires a
measurement.

The remainder of this paper describes the various
components of this demonstration: the K9 rover, the
Marscape test facility, the science interface (Viz), the
contingent planner, the conditional executive, and the
instrument placement system.

2. Robotic Testbed and Outdoor Test Facility

2.1. K9 Rover

The K9 Rover is a 6-wheel steer, 6-wheel drive
rocker-bogey chassis outfitted with electronics and
instruments appropriate for supporting research
relevant to remote science exploration.  The main CPU
is a 750 MHz PC104+ Pentium III running the Linux
operating system.  An auxiliary microprocessor
communicates with the main CPU over a serial port
and controls power switching and other I/O processing.
The motion/navigation system consists of motor
controllers for the wheels and pan/tilt unit, a compass,
and an inertial measurement unit.

The K9 rover software architecture uses the
Coupled Layered Architecture for Robotic Autonomy
(CLARAty)[9] developed at JPL, in collaboration with
ARC and Carnegie Mellon University.  By developing
our instrument placement technology under the
CLARAty architecture, we can easily port the system
to other CLARAty robots.

2.1.1. K9 Cameras

Figure 2 K9 camera systems.  Mast-mounted
navigational and science cameras (right) and front
hazard avoidance cameras (left).

K9 is equipped with three camera pairs: a front-
mounted forward looking pair of b/w stereo hazard
cameras and mast mounted stereo pairs of high
resolution color science cameras and wide field of
view b/w navigation cameras (Figure 2). The
navigation and science stereo pairs are mounted on a
common pan-tilt unit, and can acquire image
panoramas from around the rover.  All the imagers on
the rover are IEEE-1394 “firewire” digital cameras.

The hazard cameras overlook the arm workspace.
Being fixed, and close to the target area, they are the
easiest to calibrate with respect to the arm, and are
therefore the current means for 3D scanning of the
target area.

2.1.2. Instrument Arm

Figure 3 K9 5 DOF arm deployed.

K9’s instrument arm (Figure 3) is a 5-DOF robotic
manipulator based on a 4 DOF FIDO MicroArm IIA
design from JPL[11].  It is approximately 5.0 kg with a
total extended length of 0.79 meters.  The waist yaw,
shoulder pitch, elbow pitch, forearm twist (designed at
Ames), and wrist pitch joints of the arm allow arbitrary
x-y-z instrument placement as well as pitch and yaw
control within the arm workspace.  These rotational
aluminum joints are connected by graphite epoxy tube
links.  The links are configured in a side-by-side
orientation, with the two links running directly next to
each other.

The payload mass for K9’s arm is estimated to be
about 1.5 kg (3.3 lbs) with a strong-arm lifting
capacity of about 2.5 kg (5.5 lbs) when fully extended
in the horizontal position.  Each joint in the arm has an
embedded MicroMo 1319 series motor with an
integrated planetary gear head and magnetic encoder.
(Additional harmonic drive gearing was needed past
the actuator to meet the significant torque
requirements.)  The no-load output speed varies from
joint to joint, but averages about 0.1 radians per
second.  External to each joint is a multi-turn
potentiometer that is coupled to the rotor and is used



for initial arm calibration.  The calibration procedure
and magnetic encoders result in a positional accuracy
of +/- 2 mm.

2.1.3. CHAMP Microscopic Camera

Affixed at the end of K9’s arm is the CHAMP
(Camera Hand-lens MicroscoPe) microscopic camera
[8] (Figure 4).  It has a movable CCD image plane,
allowing it to obtain focused images over a wide depth
of field, from a few millimeters up to several meters.

Because rotation about CHAMP's long axis does
not need to be controlled, placing CHAMP flat against
a rock requires control of five degrees of freedom.
K9's arm has a full 5 degrees of freedom, removing the
need to coordinate simultaneous arm and rover base
motion.  The rover's base only needs to move to within
arm's reach of the rock, and can remain stationary
during arm movement.

Figure 4 CHAMP camera deployed onto rock.

CHAMP has three spring-loaded mechanical
distance sensors around its face that report contact with
the rock. CHAMP can acquire a Z-stack of images
from a target, each focused at a slightly different
depth.  These can be combined into a composite
focused image (Figure 14).

2.2. Marscape

The integrated demonstration took place in the
Marscape (Figure 5), a 3/4-acre lot on the Ames
campus that has been designed to incorporate those
aspects of the Martian environment and geology of
greatest scientific interest.  Marscape’s design includes
a dry streambed with exposed sedimentary layers.  The
streambed drains into a dry lakebed with evaporite
deposits.  Overlapping the lakebed is an old meteorite
impact crater, partially broken in a manner consistent
with past water erosion.  A volcanic zone (left in
elevation map view) intruding onto the lakebed gives
rise to an area of past hydrothermal activity, including
hot springs, known to be excellent sites for the

preservation of evidence for life.  In the top part of the
image we see a basalt magmatic cap has intruded over
the sedimentary environment, giving rise to a chaotic
terrain.

A trailer provides power, wireless network
coverage, and shelter for engineers monitoring
operations.

Figure 5 Marscape view toward dry lakebed and
impact crater (top); Marscape elevation map
showing streambed, delta, lakebed, volcano and
chaotic terrain (bottom).

3. Ground Operations

3.1. Scene Visualization and Activity
Specification

Stereo imagery from K9 is downloaded to the
Ground Operations station and processed by the
“Ames stereo-pipeline” to generate accurate high-
resolution 3D terrain models of the remote site using
binocular disparity information.  The terrain model is
viewed and manipulated in a virtual reality system
called “Viz” [10].  Viz is an interactive simulation
environment equipped with a number of science
analysis and operations tools.  These include lighting,
pose and viewpoint simulation (Figure 6).  A suite of
measurement tools is also provided that allows
intuitive interrogation of the remote site, and Viz is
integrated with a kinematic simulation engine, called
“VirtualRobot” (Figure 6), that provides rover pose
and viewpoint simulation capabilities for operations
planning.



 

Figure 6 The Viz 3-D interface (left) and Virtual
Robot control panel (right).

Using these tools, scientists specify a series of
science targets and the paths and waypoints that
connect them (Figure 7).  For each target, the actions
to be performed are specified, along with the utility of
each action.  This information is used to create an
“operations file” which is post-processed to create an
input file for the contingent planner (Section 3.2).  The
planner takes the list of desired science targets and
utilities and creates a plan that maximizes science
return subject to resource and safety constraints.  We
expect to do more work in the future to “close the
loop” between the planner and Viz (e.g. to visualize
the results from the planner directly in the 3-D scene)
so that scientists can get feedback about which targets
will be visited and which will not and can adjust their
plans accordingly.

Figure 7 A set of science targets and waypoints.

3.2. Contingent Planning

Once a set of science objectives has been chosen
using Viz, these objectives, and their values are passed
to a contingent planning system.  This planning system

determines which of the objectives to pursue along
with the detailed commands necessary to achieve those
objectives.  In addition, it also inserts “contingency
branches” into the plan to cover situations where the
plan might possibly fail.  In the example shown in
Figure 8, suppose the planner initially constructs a plan
to go to waypoint X1, and then location X3.  It could
then add a contingency branch to go to X2 instead, if,
upon arrival at X1, there is not enough power or time
available to continue to X3.

Figure 8 Waypoint and utility planning for
instrument placement.

This contingency planning is done using an
incremental Just-In-Case approach [5], as illustrated in
Figure 9.  First a “seed” plan is generated having
maximum expected utility.  That is, the plan achieves
the best objectives possible given the expected
resources available (time and energy), and expected
consumption of those resources by the actions
involved.   This plan is then evaluated to determine
where it might fail, given uncertainty in resource
consumption by the various actions involved.  A
branch point is then chosen, either by a user, or using
some simple heuristics.   An alternative, or
contingency plan is then constructed for this branch,
and incorporated into the primary plan.  The resulting
conditional plan is again evaluated, and additional



branches  can  be  added  as  needed .

1. Generate seed plan
2. Identify best branch point
3. Generate contingency branch
4. Evaluate & integrate branch

?? ? ?

Figure 9 The Just-In-Case planning approach.

The architecture of the planning engine is shown
in Figure 10.  The contingency planner makes use of
the Europa planning engine [7][6] to generate seed
plans, and to generate the plans for the contingency
branches.  For constructing a seed plan, the
contingency planner gives Europa the goals, expected
resource availability, and expected resource
consumption of actions.  When the plan comes back,
the contingency planner evaluates it using Monte Carlo
simulation to determine the impact of uncertainty in
resource usage.   The plan is then displayed in a JAVA
GUI (Figure 11) for the user to examine.   The user can
select places where the planner should try to build a
contingency branch.  To build the branch, the planner
passes appropriate goals, the prefix of the plan (prior to
the branch point), and resource availability to Europa.
In this case, the expected resource availability is
defined by the branch condition, because that
determines the resources that will be available if the
branch is taken.

resources

goals
s

Europa Planner

Contingency Planner

plan
prefix plan

Constraint Engine

Monte-Carlo
Simulation

plan

evaluation

Figure 10 Architecture of the contingency planner.

Figure 11 Planner GUI, displaying a set of
branching timelines for different attributes like
rover location and arm state.

The problem of automatically choosing good
branch points and good branch conditions is quite hard
in general (see [1], [2], for details).  Intuitively, it
might seem that a good place to put a contingency
branch is at the place where the plan is most likely to
fail.  Unfortunately, this is often near the end of the
plan, when resources (time and energy) are nearly
exhausted.  With few resources remaining, there may
not be any useful alternative plans.

Instead, one would like to anticipate failures
earlier in the plan, when useful alternatives remain.  In
other words, the planner is looking for the point(s) in
the plan where a contingent branch could be added that
would maximally increase the overall utility of the
plan.  In general, this quantity is very difficult to
compute.  In [2] we outline a heuristic technique for
estimating both the expected gain of a given branch
point, and the condition for that branch.  This
information can be used to do automatic branch point
and condition selection.  We have not yet completed
the implementation and testing of this technique, but
expect to incorporate it into the contingency planner in
the near future.

4. Rover Operations

The sequence with contingent branches is
uplinked to K9.

4.1. Robust Execution

The CRL Executive is responsible for
interpretation of the contingent plan coming from the
ground and generated by the contingent planner.  The
CRL Executive is designed to be more capable than
traditional sequence execution engines; it can handle
the expressive plans generated by the contingent
planner and can perform limited plan adaptation itself.



The planner translates its plan into the Contingent
Rover Language (CRL) for uplink, and the CRL
Executive interprets the CRL-encoded plan directly.
CRL is a flexible, conditional sequence language that
allows for execution uncertainty [2]. CRL expresses
temporal constraints and state constraints on the plan,
but allows flexibility in the precise time that actions
must be executed. Constraints include conditions that
must hold before, during, and after actions are
executed.  A recent addition to CRL is the ability to
specify concurrent threads of activity.

A primary feature of CRL is its support for
contingent branches to handle potential problem points
or opportunities in execution. The contingent branches
and the flexible plan conditions allow a single plan to
encode a large family of possible behaviors, thus
providing responses to a wide range of situations.

The structure of the CRL plan language and its
interpretation are completely domain-independent.
Domain-dependent information is added by specifying
a command dictionary, with command names and
argument types, and a command interface, which
passes commands to the rover and return values and
state information from the rover.

The CRL Executive is responsible for interpreting
the CRL command plan coming from ground control,
checking run-time resource requirements and
availability, monitoring plan execution, and potentially
selecting alternative plan branches if the situation
changes. At each branch point in the plan, there may
be multiple eligible options; the option with the highest
expected utility is chosen.  For this demonstration, the
contingent planner generated mutually exclusive
branches.

A novel feature of the CRL Executive is its
support for “floating contingencies,” which are plan
fragments that may be inserted at any point in
execution [3].  For example, a plan to perform
opportunistic science during a traverse is naturally
expressed as a floating contingency, since the presence
and position of an interesting science target is
unknown before the traverse.  Likewise, a plan to stop
and recharge the battery is another example of a
floating contingency.  In general, floating
contingencies would be impractical for the planner to
consider because of the large number of possible
branch points that they would add to a plan.
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Figure 12 CRL Executive structure.  The main
event loop communicates with other threads for
services such as timing, action monitoring, and
event monitoring.  External connections are to a
planner, which supplies new plans to execute, and a
rover real-time system, which executes actions and
supplies telemetry data.

The CRL Executive is implemented as a multi-
threaded, event-based system (see Figure 12).  Around
a central Executive event-processing loop are threads
to handle timing, event monitoring, action execution
monitoring, and telemetry gathering.  The central event
processor sends requests to the other threads (for
example, "wake up at time 20" or "notify when battery
state of charge is below 4Ah") and receives events
relevant to those requests.  This architecture allows the
CRL Executive to support concurrent activities and
flexible action conditions expressible within the CRL
language.

4.2. Target Approach and Instrument Placement

Figure 13 shows the sequence activities required
for a rover to approach a target and place an instrument
in contact with it.



Figure 13 Instrument placement execution flow.

First, the rover must maneuver to within contact
distance of the target.  Currently, the rover uses
deduced reckoning to maneuver to a location in front
of the target.  We do not yet use visual tracking, or
other means, to maintain a fix on the rock target, or
even a location on the rock, as the rover moves.  Given
our combined error budget of 30cm and navigation
error of 5%, we can only work with targets within 3m
distance of the rover.

Once the rover has moved up to the target, it must
determine where to place the instrument, what pose is
needed, and check that the target surface will permit
the instrument to be placed there.

If Mission Control specified a particular final pose
for the instrument, relative to a target that has been
accurately tracked, then this task is unnecessary.
Scientists at Mission Control might wish to specify an
entire rock as a target, not just a given point.  Not only
is such over-specification unnecessary; it may over-
constrain the problem, and might not even be feasible
prior to the rover approaching close enough to the rock
to see it in sufficient detail.  Or it might simply not be
possible to track a single point with enough precision.
In these cases, scientists are compelled to request a
measurement anywhere on a rock (or large area on it).

The first step in determining where to place an
instrument anywhere on a rock target (or other large
area) is to obtain a 3D scan of the work area.  This can
be done with stereo cameras.  It is important that they
be well calibrated with respect to the rover manipulator

arm, as the derived 3D point cloud will be used to
compute desired instrument poses.

Next, the rock (or target area) in the 3D model of
the work area must be segmented from the
background.  We have developed an iterative 3D
clustering algorithm, based on the statistical EM
algorithm, for this purpose.  This algorithm is very
robust to noise, requiring only that the ground be
relatively flat (but at an arbitrary orientation) and the
work area have at most one rock significantly larger
than any clutter in the scene.

Next, all points in the target area must be checked
for consistency with the rover instrument to be placed.
The simplest check for each point is to find all points
within a given radius, compute the best-fit plane, and
check the maximum deviations do not exceed some
preset tolerance.

Finally, the instrument can be placed.  First, via a
series of pre-planned waypoints the arm is un-stowed
and put in a holding position.  Next it goes to a pose
near the highest priority target pose in the workspace,
holding back a safe distance along the target surface
normal. To compensate for possible small errors in
surface location, the instrument's final approach is
along the measured normal to the target rock face,
moving slowly forward until contact is confirmed by
mechanical sensors.

Using images from its front stereo hazard
cameras, K9 autonomously assesses the rock scene:
segmenting the rocks from the ground and deciding on
the optimal place, in its workspace, to place an arm-
mounted microscopic camera.

Once the arm places the camera, we obtain
microscopic images of the rock surface (Figure 14).

Figure 14 Composite microscopic image of target
rock.

This demonstrated single cycle instrument
deployment from a Mars rover in an outdoor test
environment of intermediate complexity.



5. Summary

It has been speculated that the use of nuclear
power to extend the 2009 Mars rover mission to 1000
days decreases the need for this kind of autonomy, as
there would be sufficient time to accomplish
measurements in the traditional, time consuming way,
without having to risk autonomy.  This is fallacious for
several reasons.  Over time the risk of a rover failure
increases, hence it is important to get the baseline
measurements as quickly as possible.  The cost of
operating a mission in the traditional manner, with a
large co-located science and operations team for 1000
days is very high.  In fact, it may not even be possible
to obtain sufficient qualified personnel prepared to
take time out from their careers to operate a rover for 3
years.  Autonomy to alleviate this bottleneck is
essential.

Ultimately, to fully explore an area to understand
its geology and search for evidence of past or present
life may require examining many hundreds, if not
thousands, of rocks.  Without automation, a few score
rocks at most can be examined in a single mission.
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